Journal of Organometallic Chemistry, 142 (1977) C7–C8 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

THE INTERACTION OF TRICYCLOPENTADIENYL DERIVATIVES OF URANIUM(IV) AND TRIALKYLALUMINIUM

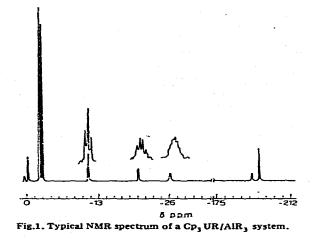
V.K. VASIL'EV^{*}, V.N. SOKOLOV and G.P. KONDRATENKOV Synthetic Rubber Research Institute, Leningrad, Gapsaiskaya 18 (U.S.S.R.) (Received October 14th, 1977)

Summary

It has been found by ¹H NMR that on interaction between $(\eta^5-C_5H_5)_3$ UR and AlR₃ the exchange of alkyl radicals takes place.

Previously, we have studied the interaction between tricyclopentadienyluranium chloride Cp_3UCl ($Cp = \eta^5 \cdot C_5H_5$), and triethylaluminium [1]. It has been shown that the interaction results in the formation of a stable complex of the $Cp_3UCl \cdot Al(C_2H_5)_3$ type.

Using ¹H NMR, we have now studied the interaction of Cp₃UR (where R = ethyl, n-butyl, allyl, phenyl or $-O-C_2H_5$), and AlR'₃ (where R' = methyl, ethyl or isobutyl). NMR spectra were recorded on Tesla BS-487C and Bruker HW-90 instruments at 80 and 90 MHz, respectively.


A typical spectrum of the systems investigated is shown in Fig. 1, where the original $Cp_3U(n-C_4H_9)$ (Table 1) and organoaluminium compound signals are seen together with some other signals. The ratio of the areas under unknown signals to those under $Cp_3U(n-C_4H_9)$ signals depends on the initial $Cp_3 UR/AIR_3$ ratio. These new signals correspond to those of Cp_3UR' by spin-spin coupling and chemical shifts. The formation of Cp_3UR' is possible only in the case of exchange of alkyl radicals in the reaction

 $Cp_3UR + AIR'_3 \neq Cp_3UR' + AIR'_2R$

(1)

where R = ethyl, n-butyl, allyl, phenyl or $-O-C_2H_5$, and R' = methyl, ethyl or isobutyl.

This is indicated in particular by the agreement between the data on chemical shifts due to Cp_3UCH_3 prepared by reaction (1) and the results given for it in [2]. In order to make the fact of $Cp_3U(C_2H_5)$ and $Cp_3U(iso-C_4H_2)$ formation more convincing we have prepared them by another method [2]. Chemical shifts for the compounds prepared by us by this method were in agreement with those for the products obtained by reaction (1). ¹H NMR data for tricyclopentadienyl

IN NEP DATA FOR COMPOUNDS AT 202 V 4

derivatives of uranium prepared by reaction (1) and original tricyclopentadienylbutyluranium are listed in Table 1.

The fact that there is no exchange in systems of the type $Cp_3UR + Cp_3UR'$ even at 413 K [2] enables the associative route of reaction (1) to be chosen (from the two possible routes, dissociative and associative), as is often proposed in similar reactions of *d*-transition metals. Unlike $Cp_3UCl \cdot AlR_3$, the complex

proposed in [1], the intermediate complex of the type Cp_3U AlR'₂

TABLE 1

R	Chemical shifts δ (ppm)					
	H(C,H,)	H(C ₁)	H(C ₂)	H(C,)	H(C ₊)	
сн,	-2.6 s	-196 s				
C.H.	~2.9 s	-190 q	-12.2 t			
H-C.H.	-3.0 s	-192 m	-26.4 m	-20.5 m	-11.5 t	
iso-C.H.	-3.2 s	-187 m	-18.8 m	-17.4 d		

^a All spectra measured in toluene- d_g ; benzene used as internal standard, chemical shifts recalculated relative to tetramethylsilane ($\delta = +7.3$ ppm); minus sign indicating upfield shift; s = singlet, d = doublet, t = triplet. q = quartet, m = multiplet.

formed in reaction (1) seems to be very unstable. Its lifetime is short and its concentration low, and therefore it could not be recorded by ¹H NMR.

-12 P.

References

V.K. Vasil'ev, V.N. Sokolov and G.P. Kondratenkov, Dokl. Akad. Nauk SSSR, in press.
T.J. Marks, A.M. Seyam and J.R. Kolb, J. Amer. Chem. Soc., 95 (1973) 5529.

11 E.,